Extreme value theory for anomaly detection – the GPD classifier

Author:

Vignotto EdoardoORCID,Engelke Sebastian

Abstract

AbstractClassification tasks usually assume that all possible classes are present during the training phase. This is restrictive if the algorithm is used over a long time and possibly encounters samples from unknown new classes. It is therefore fundamental to develop algorithms able to distinguish between normal and abnormal test data. In the last few years, extreme value theory has become an important tool in multivariate statistics and machine learning. The recently introduced extreme value machine, a classifier motivated by extreme value theory, addresses this problem and achieves competitive performance in specific cases. We show that this algorithm has some theoretical and practical drawbacks and can fail even if the recognition task is fairly simple. To overcome these limitations, we propose two new algorithms for anomaly detection relying on approximations from extreme value theory that are more robust in such cases. We exploit the intuition that test points that are extremely far from the training classes are more likely to be abnormal objects. We derive asymptotic results motivated by univariate extreme value theory that make this intuition precise. We show the effectiveness of our classifiers in simulations and on real data sets.

Publisher

Springer Science and Business Media LLC

Subject

Economics, Econometrics and Finance (miscellaneous),Engineering (miscellaneous),Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multivariate method for detecting and characterizing the changes in responses of sensors when extreme outliers arise;Engineering Applications of Artificial Intelligence;2024-07

2. Uncertainty in Environmental Micropollutant Modeling;Environmental Management;2024-05-30

3. Early Identification of Deforestation using Anomaly Detection;2023 8th International Conference on Information Technology Research (ICITR);2023-12-07

4. Meta-Transfer-Learning for Time Series Data with Extreme Events: An Application to Water Temperature Prediction;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

5. A modeler’s guide to extreme value software;Extremes;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3