Author:
Dȩbicki Krzysztof,Ji Lanpeng,Novikov Svyatoslav
Abstract
AbstractFor $$\{\varvec{B}_{H}(t)= (B_{H,1}(t) ,\ldots ,B_{H,d}(t))^{{\top }},t\ge 0\}$$
{
B
H
(
t
)
=
(
B
H
,
1
(
t
)
,
…
,
B
H
,
d
(
t
)
)
⊤
,
t
≥
0
}
, where $$\{B_{H,i}(t),t\ge 0\}, 1\le i\le d$$
{
B
H
,
i
(
t
)
,
t
≥
0
}
,
1
≤
i
≤
d
are mutually independent fractional Brownian motions, we obtain the exact asymptotics of $$\mathbb P (\exists t\ge 0: A \varvec{B}_{H}(t) - \varvec{\mu }t >\varvec{\nu }u), \ \ \ \ u\rightarrow \infty ,$$
P
(
∃
t
≥
0
:
A
B
H
(
t
)
-
μ
t
>
ν
u
)
,
u
→
∞
,
where A is a non-singular $$d\times d$$
d
×
d
matrix and $$\varvec{\mu }=(\mu _1,\ldots , \mu _d)^{{\top }}\in \mathbb {R}^d$$
μ
=
(
μ
1
,
…
,
μ
d
)
⊤
∈
R
d
, $$\varvec{\nu }=(\nu _1, \ldots , \nu _d)^{{\top }} \in \mathbb {R}^d$$
ν
=
(
ν
1
,
…
,
ν
d
)
⊤
∈
R
d
are such that there exists some $$1\le i\le d$$
1
≤
i
≤
d
such that $$\mu _i>0, \nu _i>0.$$
μ
i
>
0
,
ν
i
>
0
.
Funder
Narodowym Centrum Nauki
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC