Estimation of marginal excess moments for Weibull-type distributions

Author:

Goegebeur Yuri,Guillou Armelle,Qin Jing

Abstract

AbstractWe consider the estimation of the marginal excess moment (MEM), which is defined for a random vector (XY) and a parameter $$\beta >0$$ β > 0 as $$\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\beta }|Y> Q_{Y}(1-p)]$$ E [ ( X - Q X ( 1 - p ) ) + β | Y > Q Y ( 1 - p ) ] provided $$\mathbb {E}|X|^{\beta }< \infty $$ E | X | β < , and where $$y_{+}:=\max (0,y)$$ y + : = max ( 0 , y ) , $$Q_{X}$$ Q X and $$Q_{Y}$$ Q Y are the quantile functions of X and Y respectively, and $$p\in (0,1)$$ p ( 0 , 1 ) . Our interest is in the situation where the random variable X is of Weibull-type while the distribution of Y is kept general, the extreme dependence structure of (XY) converges to that of a bivariate extreme value distribution, and we let $$p \downarrow 0$$ p 0 as the sample size $$n \rightarrow \infty $$ n . By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds.

Funder

Agence Nationale de la Recherche,France

CNRS International Research Network MaDeF

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3