A prescriptive framework for recommending decision attributes of infrastructure disaster recovery problems

Author:

Zamanifar Milad,Hartmann Timo

Abstract

AbstractThis paper proposes a framework to systematically evaluate and select attributes of decision models used in disaster risk management. In doing so, we formalized the attribute selection process as a sequential screening-utility problem by formulating a prescriptive decision model. The aim is to assist decision-makers in producing a ranked list of attributes and selecting a set among them. We developed an evaluation process consisting of ten criteria in three sequential stages. We used a combination of three decision rules for the evaluation process, alongside mathematically integrated compensatory and non-compensatory techniques as the aggregation methods. We implemented the framework in the context of disaster resilient transportation network to investigate its performance and outcomes. Results show that the framework acted as an inclusive systematic decision aiding mechanism and promoted creative and collaborative decision-making. Preliminary investigations suggest the successful application of the framework in evaluating and selecting a tenable set of attributes. Further analyses are required to discuss the performance of the produced attributes. The properties of the resulting attributes and feedback of the users suggest the quality of outcomes compared to the retrospective attributes that were selected in an unaided selection process. Research and practice can use the framework to conduct a systematic problem-structuring phase of decision analysis and select an equitable set of decision attributes.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geospatial Processing Technology and Future Information Technology Disaster Recovery - Systematic Literature Review;2023 IEEE 7th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3