Integration of bulk RNA sequencing data and single-cell RNA sequencing analysis on the heterogeneity in patients with colorectal cancer

Author:

Zhang Jiawei,Wu Yangsheng,Shen Zhong

Abstract

AbstractThe cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that could virtually impact nearly all aspects of tumorigenesis including colorectal cancer. This work aimed to develop and validate molecular subtypes related to cGAS-STING pathways for colorectal cancer using Bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data. Bulk RNA-seq data were acquired from The Cancer Genome Atlas dataset (training dataset) and Gene Expression Omnibus dataset (validation dataset). Univariate COX survival analysis was utilized to identify prognostic differentially expressed genes (DEGs) from 6 immune pathways related to cGAS-STING. ConsensusClusterPlus package was used to classify different subtypes based on DEGs. scRNA-seq data were used to validate differences in immune status between different subtypes. Two clusters with distinct prognosis were identified based on 27 DEGs. The six cGAS-STING-related pathways had different levels of significance between the two clusters. Clust1 had most number of amplified CNVs and clust2 had the most number of loss CNVs. TP53 was the top mutated gene of which missense mutations contributed the most of single-nucleotide variants. Immune score of clust1 was higher than that in clust2, as reflected in macrophages, T cells, and natural killer cells. Three unfavorable genes and 31 protection factors were screened between the two clusters in three datasets. ScRNA-seq data analysis demonstrated that macrophages were more enriched in clust1, and tumor cells and immune cells had close interaction. We classified two distinct subtypes with different prognosis, mutation landscape, and immune characteristics.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3