3′-tRF-CysGCA overexpression in HEK-293 cells alters the global expression profile and modulates cellular processes and pathways

Author:

Karousi ParaskeviORCID,Samiotaki MartinaORCID,Makridakis ManousosORCID,Zoidakis JeromeORCID,Sideris Diamantis C.ORCID,Scorilas AndreasORCID,Carell ThomasORCID,Kontos Christos K.ORCID

Abstract

AbstracttRNA fragments (tRFs) are small non-coding RNAs generated through specific cleavage of tRNAs and involved in various biological processes. Among the different types of tRFs, the 3′-tRFs have attracted scientific interest due to their regulatory role in gene expression. In this study, we investigated the role of 3′-tRF-CysGCA, a tRF deriving from cleavage in the T-loop of tRNACysGCA, in the regulation of gene expression in HEK-293 cells. Previous studies have shown that 3′-tRF-CysGCA is incorporated into the RISC complex and interacts with Argonaute proteins, suggesting its involvement in the regulation of gene expression. However, the general role and effect of the deregulation of 3′-tRF-CysGCA levels in human cells have not been investigated so far. To fill this gap, we stably overexpressed 3′-tRF-CysGCA in HEK-293 cells and performed transcriptomic and proteomic analyses. Moreover, we validated the interaction of this tRF with putative targets, the levels of which were found to be affected by 3′-tRF-CysGCA overexpression. Lastly, we investigated the implication of 3′-tRF-CysGCA in various pathways using extensive bioinformatics analysis. Our results indicate that 3′-tRF-CysGCA overexpression led to changes in the global gene expression profile of HEK-293 cells and that multiple cellular pathways were affected by the deregulation of the levels of this tRF. Additionally, we demonstrated that 3′-tRF-CysGCA directly interacts with thymopoietin (TMPO) transcript variant 1 (also known as LAP2α), leading to modulation of its levels. In conclusion, our findings suggest that 3′-tRF-CysGCA plays a significant role in gene expression regulation and highlight the importance of this tRF in cellular processes.

Funder

European Molecular Biology Organization

European Union (E.U.) and Greece

University of Athens

Publisher

Springer Science and Business Media LLC

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3