The nodal-based floating frame of reference formulation with modal reduction

Author:

Zwölfer AndreasORCID,Gerstmayr Johannes

Abstract

AbstractIn a recent paper of the authors, a novel nodal-based floating frame of reference formulation (FFRF) for solid finite elements has been proposed. The nodal-based approach bypasses the unhandy inertia shape integrals ab initio, i.e. they neither arise in the derivation nor in the final equations of motion, leading to a surprisingly simple derivation and computer implementation without a lumped mass approximation, which is conventionally employed within commercial multibody codes. However, the nodal-based FFRF has so far been presented without modal reduction, which is usually required for efficient simulations. Hence, the aim of this follow-up paper is to bring the nodal-based FFRF into a suitable form, which allows the incorporation of modal reduction techniques to reduce the overall system size down to the number of modes included in the reduction basis, which further reduces the computational complexity significantly. Moreover, this exhibits a way to calculate the so-called FFRF invariants, which are constant “ingredients” required to set up the FFRF mass matrix and quadratic velocity vector, without integrals and without a lumped mass approximation.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3