Numerical simulation of the mechanical behavior of a carbon nanotube bundle

Author:

Mählich Daniel,Eberhardt Oliver,Wallmersperger ThomasORCID

Abstract

AbstractDue to their outstanding mechanical properties, carbon nanotubes (CNTs) are very promising materials for further applications in the field of lightweight construction. Carbon nanotube fibers, whose structure consists of a multitude of load-bearing carbon nanotube bundles interconnected by threads, are an excellent possibility to utilize these properties as engineering material. In the present research, a new method for the prediction of the mechanical properties of carbon nanotube bundles is presented. Within this, the complex structure is transformed into a simplified model based on suitable assumptions. Several parameters of the bundle are taken into account such as different types of nanotubes and various nanotube lengths. The model is applied to different configurations of carbon nanotube bundles by using a molecular mechanics approach. The interactions between the nanotubes are investigated by analyzing the Lennard–Jones potential in a virtual tensile loading test. For different configurations, the resulting forces and stresses are obtained. The results give a clear insight into the influencing parameters and demonstrate their effect on the mechanical behavior. In conclusion, the present approach is an excellent method to analyze the mechanical behavior of CNT bundles.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3