Near-critical turbulent free-surface flow over a wavy bottom

Author:

Schneider WilhelmORCID,Murschenhofer DominikORCID

Abstract

AbstractSteady plane turbulent free-surface flow over a slightly wavy bottom is considered for very large Reynolds numbers, very small bottom slopes, and Froude numbers close to the critical value 1. As in previous works, the slope and the deviation from the critical Froude number are assumed to be coupled such that turbulence modeling is not required. The amplitudes of the periodic bottom elevations, however, are assumed to be half an order of magnitude larger than in the previous case of bumps or ramps of finite length. Asymptotic expansions give a steady-state version of an extended Korteweg–deVries (KdV) equation for the surface elevation. The extension consists of a forcing term due to the unevenness of the bottom and a damping term due to friction at the bottom. Other flow quantities, such as pressure, flow velocity components, local Froude number and bottom friction force, can be expressed in terms of the surface elevation. Exact solutions of the extended KdV equation, describing stationary cnoidal waves, are obtained for bottoms of particular periodic shapes. As a limiting case, the solitary waves over a bottom ramp are re-obtained in accord with previous results.

Funder

AIC-Androsch International Management Consulting GmbH

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3