The effect of the viscoelastic support and GRPL-reinforced foam material on the thermomechanical vibration response of piezomagnetic sandwich nanosensor plates

Author:

Eroğlu MustafaORCID,Esen İsmail,Koç Mehmet Akif

Abstract

AbstractThis paper investigates the vibration characteristics of a sandwich nanosensor plate composed of piezoelectric materials, specifically barium and cobalt, in the upper and lower layers, and a core material consisting of either ceramic (silicon nitride) or metal (stainless steel) foams reinforced with graphene (GPRL). The study utilized the novel sinosoidal higher-order deformation theory and nonlocal strain gradient elasticity theory. The equations of motion for nanosensor sandwich graphene were derived using Hamilton's principle, considering the thermal, electroelastic, and magnetostrictive characteristics of the piezomagnetic surface plates. These equations were then solved using the Navier method. The core element of the sandwich nanosensor plate can be represented using three distinct foam variants: a uniform foam model, as well as two symmetric foam models. The investigation focused on analyzing the dimensionless fundamental natural frequencies of the sandwich nanosensor plate. This analysis considered the influence of three distinct foam types, the volumetric graphene ratio, temperature variation, nonlocal parameters, porosity ratio, electric and magnetic potential, as well as spring and shear viscoelastic support. Furthermore, an analysis was conducted on the impact of the metal and ceramic composition of the central section of the sandwich nanosensor plate on its dimensionless fundamental natural frequencies. In this context, the use of ceramic as the central material results in a mean enhancement of 33% in the fundamental natural frequencies. In contrast, the incorporation of graphene into the core material results in an average enhancement of 27%. The thermomechanical vibration behavior of the nanosensor plate reveals that the presence of graphene-supported foam and a viscoelastic support structure in the core layer leads to an increase in thermal resistance. This increase is dependent on factors such as the ratio of graphene, porosity ratio of the foam, and parameters of the viscoelastic support. Metal foam or ceramic foam has been found to enhance thermal resistance when compared to solid metal or ceramic core materials. The analysis results showed that it is important to take into account the temperature-dependent thermal properties of barium and cobalt, which are piezo-electromagnetic materials, and the core layer materials ceramics and metal, as well as the graphene used to strengthen the core. The research is anticipated to generate valuable findings regarding the advancement and utilization of nanosensors, transducers, and nano-electromechanical systems engineered for operation in high-temperature environments.

Funder

Sakarya University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3