A single-domain spectral solver for spatially nonsmooth differential equations of quasistatic solid mechanics in polar coordinates

Author:

Perchikov NathanORCID,Diehl Martin

Abstract

AbstractIn the present work, a spectral solver is developed for integration of certain differential equations of solid mechanics, namely static stress equilibrium in composite materials, described in cylindrical or spherical polar coordinates. The spectral approach is encompassed in approximating the displacement field using expansion into a series of Chebyshev polynomials in the radial coordinate and complex exponents in the angular direction. Consequently, differential operators in real space become algebraic operators in spectral space. The spatial heterogeneity and metric non-flatness pertinent to polar geometry are addressed by an iterative strategy, employing both second-order and first-order iterative solvers. The essence of the new contribution is in addressing the difficulty posed by the inherent nonsmoothness present in composite materials and the polar singularity. The interplay of the two produces instability, which is resolved in the proposed approach, specifically by using a new efficient linesearch algorithm, appropriate for the studied class of problems. The method is illustrated by analysis of 1D and 2D linear-elastic and linear-elastic–perfectly plastic response of composites to prescribed radial surface displacement. The developed method allows performing stress homogenization on polar representative volume elements, which has its conceptual advantages, while allowing similar runtime (for sufficient computing resources and an iterative strategy) to the one exhibited by spectral analysis in Cartesian coordinates.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3