Abstract
AbstractThis paper develops a frictional moving contact model for a functionally graded (FG) orthotropic layer pressed by a rigid cylindrical punch. The FG orthotropic layer is fully bonded to the isotropic half-plane. The punch moves to the left on the layer at a constant subsonic velocity and a shear stress arises in the contact zone according to the Coulomb friction law. General expressions of displacements and stresses are derived with the help of the Fourier transform and Galilean transformation. Using boundary conditions, the moving contact problem is reduced to a Cauchy-type singular integral equation, the unknowns of which are contact stress and contact width. Gauss–Jacobi integration formula is used to solve the obtained singular integral equation. The effect of some parameters and material properties on the contact width, contact stress and in-plane stress are given in graphical forms and detailed numerical interpretations are presented.
Funder
Cankırı Karatekin University
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-Ceramic Composites. IOM Communications, London (1998)
2. Chen, P., Chen, S.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50(7–8), 1108–1119 (2013)
3. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49(2), 161–182 (2007)
4. Draiche, K., Bousahla, A.A., Tounsi, A., Hussain, M.: An integral shear and normal deformation theory for bending analysis of functionally graded sandwich curved beams. Arch. Appl. Mech. 91, 4669–4691 (2021)
5. Yang, Y., Lam, C.C., Kou, K.P., Iu, V.P.: Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method. Compos. Struct. 117, 32–39 (2014)