A higher-order plate theory for the analysis of vibrations of thick orthotropic laminates

Author:

Furtmüller ThomasORCID,Adam Christoph

Abstract

AbstractIn this contribution, flexural vibrations of linear elastic laminates composed of thick orthotropic layers, such as cross-laminated timber, are addressed. For efficient computation, an equivalent single-layer plate theory with eight kinematic degrees of freedom is derived, both in terms of equations of motion at the continuum level and in terms of a finite element representation. The validity of the plate theory is demonstrated by comparing natural frequencies of a simply supported plate over a wide frequency range for which an analytical solution is available. Furthermore, the influence of individual material properties on the accuracy of the plate theory is investigated, demonstrating its broad applicability. The influence of material orientation on the accuracy of the plate theory is examined by comparative finite element simulations. It is shown that, for cross-ply laminates, the plate theory is valid for elements oriented at any angle to the material principal axes.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3