1. Takahashi, H., Ishikawa, T., Okugawa, D., Hashida, T.: Laser and plasma-arc thermal shock-fatigue fracture evaluation procedure for functionally gradient materials, In: Schneider, G.A., Petzov, G. (Eds.), Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, pp. 543–554. Kluwer Academic Publ., Dordrecht, The Netherlands (1993) (Proc. NATO Advanced Workshop on Thermal Shock and ..., Schloss Ringberg/Munich, Germany, Nov. 8–13, 1992)
2. Yoon J., Ru C.Q., Mioduchowski A.: Effect of a thin surface coating on thermal stresses within an elastic half-plane. Acta Mech. 185, 227–243 (2006)
3. Kupryanov, I.L., Geller, M.A.: Gazo-tiermičieskije Pokrytia s Powyšiennoy Pročnostyu Scieplieniya (Gas-Thermal Coatings of Higher Cohesive Strength). Nawuka I Technika, Minsk (1990) (in Russian)
4. Zhu, D., Miller, R.A.: Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed Temperature and Stress Gradients. NASA Technical Memorandum 113169 (available in internet) (1997)
5. Chen X., Liu Y.: Thermal stress analysis of multi-layer thin films and coatings by an advanced boundary element method. CMES 2, 337–349 (2001)