Natural convection in a fluid saturating an anisotropic porous medium in LTNE: effect of depth-dependent viscosity

Author:

Capone FlorindaORCID,Gianfrani Jacopo A.

Abstract

AbstractThermal convection in a fluid saturating an anisotropic porous medium in local thermal nonequilibrium (LTNE) is investigated, with specific attention to the effect of variable viscosity on the onset of convection. Many fluids show a remarkable dependence of viscosity on temperature that cannot be neglected. For this reason, we take into account a fluid whose viscosity decreases exponentially with depth, according to Straughan (Acta Mech. 61:59–72, 1986), Torrance and Turcotte (J. Fluid Mech. 47(1):113–125, 1971). The novelty of this paper is to highlight how variable viscosity coupled with the LTNE assumption affects the onset of convection. A numerical procedure shows the destabilising effect of depth-dependent viscosity. Moreover, it comes out that the LTNE hypothesis makes the influence of viscosity more intense. Linear instability analysis of the conduction solution is carried out by means of the Chebyshev-tau method coupled to the QZ algorithm, which provides the critical Rayleigh number for the onset of convection in a straightforward way. The energy method is employed in order to study the nonlinear stability. The optimal result of coincidence between the linear instability threshold and the global nonlinear stability threshold is obtained. The influence of anisotropic permeability and conductivity, weighted conductivity ratio, and interaction coefficient on the onset of convection is highlighted.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3