Rigid body dynamics using equimomental systems of point-masses

Author:

Laus L. P.,Selig J. M.ORCID

Abstract

Abstract The inertia matrix of any rigid body is the same as the inertia matrix of some system of four point-masses. In this work, the possible disposition of these point-masses is investigated. It is found that every system of possible point-masses with the same inertia matrix can be parameterised by the elements of the orthogonal group in four-dimensional modulo-permutation of the points. It is shown that given a fixed inertia matrix, it is possible to find a system of point-masses with the same inertia matrix but where one of the points is located at some arbitrary point. It is also possible to place two point-masses on an arbitrary line or three of the points on an arbitrary plane. The possibility of placing some of the point-masses at infinity is also investigated. Applications of these ideas to rigid body dynamics are considered. The equation of motion for a rigid body is derived in terms of a system of four point-masses. These turn out to be very simple when written in a 6-vector notation.

Funder

London South Bank University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Reference17 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3