Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells

Author:

Pagani A.ORCID,Azzara R.,Carrera E.

Abstract

AbstractThis work intends to present a novel numerical approach for studying the vibration behaviours of variable angle tow (VAT) composite structures in their quasi-static nonlinear equilibrium states. This methodology is able to predict the buckling load, to investigate the natural frequencies variation for progressively higher loads, and to provide a means for verifying experimental Vibration Correlation Technique results. The use of VAT composites, in which the fibre orientations are allowed to vary along with a curvilinear pattern within each lamina, dramatically increases the design space and provides a significant improvement in buckling performance and benefits in the postbuckling regime. This study has been performed using an innovative methodology based on the well-established Carrera Unified Formulation able to describe several kinematic models for two-dimensional structures. In detail, layerwise theories are employed to characterize the complex phenomena that may appear in VAT composite structures. All Green-Lagrange strain components are employed because far nonlinear regimes are investigated. Furthermore, the geometrical nonlinear equations are written in a total Lagrangian framework and solved with an opportune Newton–Raphson method along with a path-following approach based on the arc-length constraint. Different VAT composite structures have been analyzed to validate the proposed approach and provide some benchmark solutions. The computed equilibrium paths are compared with results obtained using the commercial code ABAQUS. The results document the good accuracy and reliability of the presented methodology and show this numerical tool’s potentialities.

Funder

h2020 european research council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3