Abstract
AbstractSpecial tasks for pre-service teachers (PSTs) in university mathematics courses (“interface tasks”) are a common innovation in recent years to overcome the second discontinuity. By this, we mean tasks that are situated by typical everyday challenges of mathematics teaching and in which PSTs must use their mathematical knowledge and skills in a professionally relevant way. In this paper, we analyze answers that PSTs have created to an interface task on symmetry. The PSTs were asked to clarify a student’s question from a mathematical perspective and then give a suitable elementarized answer. We situate these two steps theoretically and reconstruct the mathematical reasoning in PSTs' answers. Through qualitative content analysis, we examined how PSTs justify figures' symmetries from a university mathematics perspective and when responding to the fictitious student. The scenario of a student questioning the existence of 100° rotationally symmetrical figures elicited rich and varied responses, proving suitable for an interface task. We compared PSTs' reasoning related to mathematical clarification with the reasoning related to elementarization. In many cases, this revealed a productive use of course content. An interesting result is that there is no uniform picture as to whether the arguments are more detailed in the mathematical clarification or in the elementarization.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Allmendinger, H. (2016). Die Didaktik in Felix Kleins Elementarmathematik vom höheren Standpunkte aus. Journal Für Mathematikdidaktik, 37(1), 209–237. https://doi.org/10.1007/s13138-016-0089-1
2. Ball, D. L., & Bass, H. (2002). Toward a practice-based theory of mathematical knowledge for teaching. In Simmt E. & Brent D. (Eds.), Proceedings of the 2002 Annual Meeting of the Canadian Mathematics Education Study Group (pp. 3–14). CMESG/GCEDM.
3. Bauer, T. (2013). Schnittstellen bearbeiten in Schnittstellenaufgaben. In Ableitinger, C., Kramer, J. & Prediger, S. (Eds.), Zur doppelten Diskontinuität in der Gymnasiallehrerbildung (pp. 39–56). Springer Spektrum. https://doi.org/10.1007/978-3-658-01360-8_3.
4. Biehler, R., & Hoffmann, M. (2022). Fachwissen als Grundlage fachdidaktischer Urteilskompetenz - Beispiele für die Herstellung konzeptueller Bezüge zwischen fachwissenschaftlicher und fachdidaktischer Lehre im gymnasialen Lehramtsstudium. In Isaev, V., Eichler, A. & Loose, F. (Eds.), Professionsorientierte Fachwissenschaft–Kohärenzstiftende Lerngelegenheiten für das Lehramtsstudium (pp. 49–72). Springer. https://doi.org/10.1007/978-3-662-63948-1_4.
5. Bruner, J. S. (1970). Der Prozeß der Erziehung (5th ed.). Berlin: Pädagogischer Verlag Schwann.