Abstract
AbstractMathematical concepts are regularly used in media reports concerning the Covid-19 pandemic. These include growth models, which attempt to explain or predict the effectiveness of interventions and developments, as well as the reproductive factor. Our contribution has the aim of showing that basic mental models about exponential growth are important for understanding media reports of Covid-19. Furthermore, we highlight how the coronavirus pandemic can be used as a context in mathematics classrooms to help students understand that they can and should question media reports on their own, using their mathematical knowledge. Therefore, we first present the role of mathematical modelling in achieving these goals in general. The same relevance applies to the necessary basic mental models of exponential growth. Following this description, based on three topics, namely, investigating the type of growth, questioning given course models, and determining exponential factors at different times, we show how the presented theoretical aspects manifest themselves in teaching examples when students are given the task of reflecting critically on existing media reports. Finally, the value of the three topics regarding the intended goals is discussed and conclusions concerning the possibilities and limits of their use in schools are drawn.
Funder
Julius-Maximilians-Universität Würzburg
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Education
Reference47 articles.
1. Aguilar, M. S., & Castaneda, A. (2021). What mathematical competencies does a citizen need to interpret Mexico’s official information about the COVID-19 pandemic? Educational Studies in Mathematics, 108(1–2), 227–248. https://doi.org/10.1007/s10649-021-10082-9
2. Ärlebäck, J. B., Doerr, H. M., & O’Neil, A. H. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336. https://doi.org/10.1080/10986065.2013.834405
3. Bakker, A., Cai, J., & Zenger, L. (2021). Future themes of mathematics education research: An international survey before and during the pandemic. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-021-10049-w
4. Blomhøj, M. (2004). Mathematical modelling: A theory for practice. In B. Clarke, D. M. Clarke, G. Emanuelsson, B. Johansson, D. V. Lester, A. Wallby, & K. Wallby (Eds.), International Perspectives on Learning and Teaching Mathematics (pp. 145–159). National Center for Mathematics Education
5. Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139. https://doi.org/10.1093/teamat/22.3.123
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献