An untargeted metabolomics strategy to measure differences in metabolite uptake and excretion by mammalian cell lines

Author:

Wright Muelas MarinaORCID,Roberts Ivayla,Mughal Farah,O’Hagan Steve,Day Philip J.,Kell Douglas B.

Abstract

Abstract Introduction It is widely but erroneously believed that drugs get into cells by passing through the phospholipid bilayer portion of the plasma and other membranes. Much evidence shows, however, that this is not the case, and that drugs cross biomembranes by hitchhiking on transporters for other natural molecules to which these drugs are structurally similar. Untargeted metabolomics can provide a method for determining the differential uptake of such metabolites. Objectives Blood serum contains many thousands of molecules and provides a convenient source of biologically relevant metabolites. Our objective was to detect and identify metabolites present in serum, but to also establish a method capable of measure their uptake and secretion by different cell lines. Methods We develop an untargeted LC-MS/MS method to detect a broad range of compounds present in human serum. We apply this to the analysis of the time course of the uptake and secretion of metabolites in serum by several human cell lines, by analysing changes in the serum that represents the extracellular phase (the ‘exometabolome’ or metabolic footprint). Results Our method measures some 4000–5000 metabolic features in both positive and negative electrospray ionisation modes. We show that the metabolic footprints of different cell lines differ greatly from each other. Conclusion Our new, 15-min untargeted metabolome method allows for the robust and convenient measurement of differences in the uptake of serum compounds by cell lines following incubation in serum. This will enable future research to study these differences in multiple cell lines that will relate this to transporter expression, thereby advancing our knowledge of transporter substrates, both natural and xenobiotic compounds.

Funder

Biotechnology and Biological Sciences Research Council

Novo Nordisk Fonden

University of Liverpool

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3