Spectral binning as an approach to post-acquisition processing of high resolution FIE-MS metabolome fingerprinting data

Author:

Finch Jasen P.ORCID,Wilson Thomas,Lyons Laura,Phillips Helen,Beckmann Manfred,Draper John

Abstract

Abstract Introduction Flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) fingerprinting produces complex, high dimensional data sets which require specialist in-silico software tools to process the data prior to analysis. Objectives Present spectral binning as a pragmatic approach to post-acquisition procession of FIE-HRMS metabolome fingerprinting data. Methods A spectral binning approach was developed that included the elimination of single scan m/z events, the binning of spectra and the averaging of spectra across the infusion profile. The modal accurate m/z was then extracted for each bin. This approach was assessed using four different biological matrices and a mix of 31 known chemical standards analysed by FIE-HRMS using an Exactive Orbitrap. Bin purity and centrality metrics were developed to objectively assess the distribution and position of accurate m/z within an individual bin respectively. Results The optimal spectral binning width was found to be 0.01 amu. 80.8% of the extracted accurate m/z matched to predicted ionisation products of the chemical standards mix were found to have an error of below 3 ppm. The open-source R package binneR was developed as a user friendly implementation of the approach. This was able to process 100 data files using 4 Central Processing Units (CPU) workers in only 55 seconds with a maximum memory usage of 1.36 GB. Conclusion Spectral binning is a fast and robust method for the post-acquisition processing of FIE-HRMS data. The open-source R package binneR allows users to efficiently process data from FIE-HRMS experiments with the resources available on a standard desktop computer.

Funder

Woodland Heritage

Medical Research Council

Aberystwyth University

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3