GC-MS/MS analysis of metabolites derived from a single human blastocyst

Author:

Inoue Naomi,Nishida YoshihiroORCID,Harada Emi,Sakai Kumiko,Narahara Hisashi

Abstract

Abstract Introduction The field of assisted reproductive technology (ART) has significantly advanced; however, morphological evaluation remains as the chosen method of assessment of embryo quality. Objective We aimed to examine metabolic changes in embryo culture medium to develop a non-invasive method for evaluation of embryo quality. Methods We performed metabolic analysis of culture medium obtained from a single blastocyst cultured for freezing. Results In total, 187 (39.8%) of the 469 detectable organic acid metabolites were identified. A significant change (p < 0.05) was observed in eight metabolites between the good-quality and poor-quality embryo groups. Differences were observed in several metabolic pathways between the good-quality and poor-quality embryo groups. Metabolites that showed significant changes were primarily involved in the metabolism of branched-chain amino acids. Conclusion The quantification of metabolism in human embryos may assist in identification and selection of good-quality embryos with high rates of survival before freezing and implantation in conjunction with morphological classification. This may help to identify embryos with high rates of survival.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3