Monitoring of age- and gender-related alterations of endocannabinoid levels in selected brain regions with the use of SPME probes

Author:

Roszkowska Anna,Klejbor Ilona,Bogusiewicz Joanna,Plenis Alina,Bojko Barbara,Kowalik Katarzyna,Moryś Janusz,Bączek Tomasz

Abstract

Abstract Introduction The endocannabinoid system consists of different types of receptors, enzymes and endocannabinoids (ECs), which are involved in several physiological processes, but also play important role in the development and progression of central nervous system disorders. Objectives The purpose of this study was to apply precise and sensitive methodology for monitoring of four ECs, namely anandamide (AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl dopamine (NADA), 2-arachidonyl glyceryl ether (2-AGe) in selected brain regions of female and male rats at different stages of development (young, adult and old). Methods Biocompatible solid-phase microextraction (SPME) probes were introduced into the intact (non-homogenized) brain structures for isolation of four ECs, and the extracts were subjected to LC–MS/MS analysis. Two chemometric approaches, namely hierarchical cluster analysis (HCA) and Principal Component Analysis (PCA) were applied to provide more information about the levels of 2-AG and AEA in different brain structures. Results 2-AG and AEA were extracted and could be quantified in each brain region; the level of 2-AG was significantly higher in comparison to the level of AEA. Two highly unstable ECs, NADA and 2-AGe, were captured by SPME probes from intact brain samples for the first time. Conclusion SPME probes were able to isolate highly unstable endogenous compounds from intact tissue, and provided new tools for precise analysis of the level and distribution of ECs in different brain regions. Monitoring of ECs in brain samples is important not only in physiological conditions, but also may contribute to better understanding of the functioning of the endocannabinoid system in various disorders.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3