Metabolomics of testosterone enanthate administration during severe-energy deficit

Author:

Stein Jesse A.,Karl J. Philip,Berryman Claire E.,Harris Melissa N.,Rood Jennifer C.,Pasiakos Stefan M.,Lieberman Harris R.ORCID

Abstract

Abstract Introduction Testosterone administration attenuates reductions in total body mass and lean mass during severe energy deficit (SED). Objectives This study examined the effects of testosterone administration on the serum metabolome during SED. Methods In a double-blind, placebo-controlled clinical trial, non-obese men were randomized to receive 200-mg testosterone enanthate/wk (TEST) (n = 24) or placebo (PLA) (n = 26) during a 28-d inpatient, severe exercise- and diet-induced energy deficit. This study consisted of three consecutive phases. Participants were free-living and provided a eucaloric diet for 14-d during Phase 1. During Phase 2, participants were admitted to an inpatient unit, randomized to receive testosterone or placebo, and underwent SED for 28-d. During Phase 3, participants returned to their pre-study diet and physical activity habits. Untargeted metabolite profiling was conducted on serum samples collected during each phase. Body composition was measured using dual-energy X-ray absorptiometry after 11-d of Phase 1 and after 25-d of Phase 2 to determine changes in fat and lean mass. Results TEST had higher (Benjamini–Hochberg adjusted, q < 0.05) androgenic steroid and acylcarnitine, and lower (q < 0.05) amino acid metabolites after SED compared to PLA. Metabolomic differences were reversed by Phase 3. Changes in lean mass were associated (Bonferroni-adjusted, p < 0.05) with changes in androgenic steroid metabolites (r = 0.42–0.70), acylcarnitines (r = 0.37–0.44), and amino acid metabolites (r = − 0.36–− 0.37). Changes in fat mass were associated (p < 0.05) with changes in acylcarnitines (r = − 0.46–− 0.49) and changes in urea cycle metabolites (r = 0.60–0.62). Conclusion Testosterone administration altered androgenic steroid, acylcarnitine, and amino acid metabolites, which were associated with changes in body composition during SED.

Funder

Defense Medical Research and Development Program

U.S. Army Medical Research and Development Command

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3