Identification to species level of live single microalgal cells from plankton samples with matrix-free laser/desorption ionization mass spectrometry

Author:

Baumeister Tim U. H.ORCID,Vallet MarineORCID,Kaftan FilipORCID,Guillou LaureORCID,Svatoš AlešORCID,Pohnert GeorgORCID

Abstract

Abstract Introduction Marine planktonic communities are complex microbial consortia often dominated by microscopic algae. The taxonomic identification of individual phytoplankton cells usually relies on their morphology and demands expert knowledge. Recently, a live single-cell mass spectrometry (LSC-MS) pipeline was developed to generate metabolic profiles of microalgae. Objective Taxonomic identification of diverse microalgal single cells from collection strains and plankton samples based on the metabolic fingerprints analyzed with matrix-free laser desorption/ionization high-resolution mass spectrometry. Methods Matrix-free atmospheric pressure laser-desorption ionization mass spectrometry was performed to acquire single-cell mass spectra from collection strains and prior identified environmental isolates. The computational identification of microalgal species was performed by spectral pattern matching (SPM). Three similarity scores and a bootstrap-derived confidence score were evaluated in terms of their classification performance. The effects of high and low-mass resolutions on the classification success were evaluated. Results Several hundred single-cell mass spectra from nine genera and nine species of marine microalgae were obtained. SPM enabled the identification of single cells at the genus and species level with high accuracies. The receiver operating characteristic (ROC) curves indicated a good performance of the similarity measures but were outperformed by the bootstrap-derived confidence scores. Conclusion This is the first study to solve taxonomic identification of microalgae based on the metabolic fingerprints of the individual cell using an SPM approach.

Funder

Max-Planck-Gesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3