Distinct serum metabolomic signatures of multiparous and primiparous dairy cows switched from a moderate to high-grain diet during early lactation

Author:

Pacífico C.ORCID,Stauder A.,Reisinger N.,Schwartz-Zimmermann H. E.ORCID,Zebeli Q.ORCID

Abstract

Abstract Introduction Feeding of high-grain diets is common in cows during early lactation, but increases the odds of metabolic derailments, which can likely be detected as undesirable shifts in the serum metabolome signature. Objectives The present study aimed to identify the metabolic signatures of the serum metabolome of early lactation dairy cows switched from a moderate to a high-grain diet. Methods Targeted ESI-LC-MS/MS-based metabolomics was used to characterize metabolic alterations in the serum of early lactation multiparous (MP, n = 16) and primiparous (PP, n = 8) Simmental cows, according to parity and feeding phase. Data were analysed using different data mining approaches. Results Carnitine, acetylcarnitine, propionoylcarnitine, amino acid related compounds cis-4-hydroxyproline, trans-4-hydroxyproline, proline betaine, lysophosphatidylcholine PC a C16:1 and phosphatidylcholine PC ae C36:0 were identified as the key metabolites distinguishing MP from PP cows. A different serum metabolite composition during moderate and high-grain diet was also evident. Notably, cows fed high grain diet had higher serum concentrations of primary bile acids and triglycerides, but lower levels of conjugated bile acids and carboxylic acids during the first week in grain. Amino acids valine, cystine and taurine together with lysophosphatidylcholine PC a C26:0 and several phosphatidylcholines were classified as important features for cluster separation. Conclusions Our study greatly expands earlier observations on dietary effects on serum metabolome composition of cows. The altered metabolomic fingerprints clearly distinguishable by diet and cow parity hold potential to be used as early diagnostic tools for cows experiencing grain-induced metabolic disturbances.

Funder

Österreichische Forschungsförderungsgesellschaft

University of Veterinary Medicine Vienna

Christian Doppler Forschungsgesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3