Plasma metabolites in childhood Burkitt lymphoma cases and cancer-free controls in Uganda
-
Published:2024-06-28
Issue:4
Volume:20
Page:
-
ISSN:1573-3890
-
Container-title:Metabolomics
-
language:en
-
Short-container-title:Metabolomics
Author:
Huang Jiaqi,Nabalende Hadijah,Camargo M. Constanza,Lovett Jacqueline,Otim Isaac,Legason Ismail D.,Ogwang Martin D.,Kerchan Patrick,Kinyera Tobias,Ayers Leona W.,Bhatia Kishor,Goedert James J.,Reynolds Steven J.,Crompton Peter D.,Moore Steven C.,Moaddel Ruin,Albanes Demetrius,Mbulaiteye Sam M.
Abstract
Abstract
Introduction
Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma associated with Plasmodium falciparum and Epstein-Barr virus, both of which affect metabolic pathways. The metabolomic patterns of BL is unknown.
Materials and methods
We measured 627 metabolites in pre-chemotherapy treatment plasma samples from 25 male children (6–11 years) with BL and 25 cancer-free area- and age-frequency-matched male controls from the Epidemiology of Burkitt Lymphoma in East African Children and Minors study in Uganda using liquid chromatography-tandem mass spectrometry. Unconditional, age-adjusted logistic regression analysis was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) for the BL association with 1-standard deviation increase in the log-metabolite concentration, adjusting for multiple comparisons using false discovery rate (FDR) thresholds and Bonferroni correction.
Results
Compared to controls, levels for 42 metabolite concentrations differed in BL cases (FDR < 0.001), including triacylglyceride (18:0_38:6), alpha-aminobutyric acid (AABA), ceramide (d18:1/20:0), phosphatidylcholine ae C40:6 and phosphatidylcholine C38:6 as the top signals associated with BL (ORs = 6.9 to 14.7, P < 2.4✕10− 4). Two metabolites (triacylglyceride (18:0_38:6) and AABA) selected using stepwise logistic regression discriminated BL cases from controls with an area under the curve of 0.97 (95% CI: 0.94, 1.00).
Conclusion
Our findings warrant further examination of plasma metabolites as potential biomarkers for BL risk/diagnosis.
Funder
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Abdrabou, W., Dieng, M. M., Diawara, A., Serme, S. S., Almojil, D., Sombie, S., Henry, N. B., Kargougou, D., Manikandan, V., Soulama, I., & Idaghdour, Y. (2021). Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab, 3, 1001–1016. https://doi.org/10.1038/s42255-021-00404-9 2. Alaggio, R., Amador, C., Anagnostopoulos, I., Attygalle, A. D., Araujo, I. B. O., Berti, E., Bhagat, G., Borges, A. M., Boyer, D., Calaminici, M., Chadburn, A., Chan, J. K. C., Cheuk, W., Chng, W. J., Choi, J. K., Chuang, S. S., Coupland, S. E., Czader, M., Dave, S. S., et al. (2022). The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid neoplasms. Leukemia, 36, 1720–1748. https://doi.org/10.1038/s41375-022-01620-2 3. Ambrosio, M. R., Piccaluga, P. P., Ponzoni, M., Rocca, B. J., Malagnino, V., Onorati, M., De Falco, G., Calbi, V., Ogwang, M., Naresh, K. N., Pileri, S. A., Doglioni, C., Leoncini, L., & Lazzi, S. (2012). The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: Adipophilin. PLoS One, 7, e44315. https://doi.org/10.1371/journal.pone.0044315 4. Andrade, C. M., Fleckenstein, H., Thomson-Luque, R., Doumbo, S., Lima, N. F., Anderson, C., Hibbert, J., Hopp, C. S., Tran, T. M., Li, S., Niangaly, M., Cisse, H., Doumtabe, D., Skinner, J., Sturdevant, D., Ricklefs, S., Virtaneva, K., Asghar, M., Homann, M. V., et al. (2020). Increased circulation time of Plasmodium Falciparum underlies persistent asymptomatic infection in the dry season. Nature Medicine, 26, 1929–1940. https://doi.org/10.1038/s41591-020-1084-0 5. Banjac, A., Perisic, T., Sato, H., Seiler, A., Bannai, S., Weiss, N., Kölle, P., Tschoep, K., Issels, R. D., Daniel, P. T., Conrad, M., & Bornkamm, G. W. (2008). The cystine/cysteine cycle: A redox cycle regulating susceptibility versus resistance to cell death. Oncogene, 27, 1618–1628. https://doi.org/10.1038/sj.onc.1210796
|
|