Author:
Zhang Weiming,Dai Fu-Zhi,Xiang Huimin,Zhao Biao,Wang Xiaohui,Ni Na,Karre Rajamallu,Wu Shijiang,Zhou Yanchun
Abstract
AbstractThe advance in communication technology has triggered worldwide concern on electromagnetic wave pollution. To cope with this challenge, exploring high-performance electromagnetic (EM) wave absorbing materials with dielectric and magnetic losses coupling is urgently required. Of the EM wave absorbers, transition metal diborides (TMB2) possess excellent dielectric loss capability. However, akin to other single dielectric materials, poor impedance match leads to inferior performance. High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design. Herein, three HE TMB2 powders with nominal equimolar TM including HE TMB2-1 (TM = Zr, Hf, Nb, Ta), HE TMB2-2 (TM = Ti, Zr, Hf, Nb, Ta), and HE TMB2-3 (TM = Cr, Zr, Hf, Nb, Ta) have been designed and prepared by one-step boro/carbothermal reduction. As a result of synergistic effects of strong attenuation capability and impedance match, HE TMB2-1 shows much improved performance with the optimal minimum reflection loss (RLmin) of −59.6 dB (8.48 GHz, 2.68 mm) and effective absorption bandwidth (EAB) of 7.6 GHz (2.3 mm). Most impressively, incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1–18 GHz, thus achieving the RLmin of −56.2 dB (8.48 GHz, 2.63 mm) and the EAB of 11.0 GHz (2.2 mm), which is superior to most other EM wave absorbing materials. This work reveals that constructing high-entropy compounds, especially by incorporating magnetic elements, is effectual in tailoring the impedance match for highly conductive compounds, i.e., tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Reference73 articles.
1. Erogul O, Oztas E, Yildirim I, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: An in vitro study. Arch Med Res 2006, 37: 840–843.
2. Jamshed MA, Héliot F, Brown TWC. A survey on electromagnetic risk assessment and evaluation mechanism for future wireless communication systems. IEEE J Electromagn RF Microwaves Med Biology 2020, 4: 24–36.
3. Raghvendra M, Aastha D, Priyanka M, et al. Recent progress in electromagnetic absorbing materials. In Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. Jaroszewski M, Tomas S, Rane AV, Eds. New Jersey: John Wiley & Sons, 2018.
4. Green M, Chen XB. Recent progress of nanomaterials for microwave absorption. J Materiomics 2019, 5: 503–541.
5. Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140: 696–733.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献