Microstructural regulation, oxidation resistance, and mechanical properties of Cf/SiC/SiHfBOC composites prepared by chemical vapor infiltration with precursor infiltration pyrolysis

Author:

Lyu Yang,Du Baihe,Chen Guiqing,Zhao Guangdong,Cheng Yuan,Zhou Shanbao,Lv Qingrong,Zhang Xinghong,Han Wenbo

Abstract

AbstractTo further improve the oxidation resistance of polymer derived ceramic (PDC) composites in harsh environments, Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration (CVI) and precursor impregnation pyrolysis (PIP) methods. The weight retention change, mechanical properties, and microstructure of Cf/SiC/SiHfBOC before and after oxidation in air were studied in details. Microscopic analyses showed that only the interface between the ceramics and fibers was oxidized to some extent, and hafnium had been enriched on the composite surface after oxidizing at different temperature. The main oxidation products of Cf/SiC/SiHfBOC composites were HfO2 and HfSiO4 after oxidation at 1500 °C for 60 min. Moreover, the weight retention ratio and compressive strength of the Cf/SiC/SiHfBOC composites are 83.97% and 23.88±3.11 MPa, respectively. It indicates that the Cf/SiC/SiHfBOC composites should be promising to be used for a short time in the oxidation environment at 1500 °C.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3