Author:
Xu Wenjing,Zhang Zhongwei,Liu Chengyan,Gao Jie,Ye Zhenyuan,Chen Chunguang,Peng Ying,Bai Xiaobo,Miao Lei
Abstract
AbstractEco-friendly SnTe based thermoelectric materials are intensively studied recently as candidates to replace PbTe; yet the thermoelectric performance of SnTe is suppressed by its intrinsically high carrier concentration and high thermal conductivity. In this work, we confirm that the Ag and La co-doping can be applied to simultaneously enhance the power factor and reduce the thermal conductivity, contributing to a final promotion of figure of merit. On one hand, the carrier concentration and band offset between valence bands are concurrently reduced, promoting the power factor to a highest value of ∼2436 µW·m−1·K−2 at 873 K. On the other hand, lots of dislocations (∼3.16×107 mm−2) associated with impurity precipitates are generated, resulting in the decline of thermal conductivity to a minimum value of 1.87 W·m−1·K−1 at 873 K. As a result, a substantial thermoelectric performance enhancement up to zT ≈ 1.0 at 873 K is obtained for the sample Sn0.94Ag0.09La0.05Te, which is twice that of the pristine SnTe (zT ≈ 0.49 at 873 K). This strategy of synergistic manipulation of electronic band and microstructures via introducing rare earth elements could be applied to other systems to improve thermoelectric performance.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献