Substantial thermoelectric enhancement achieved by manipulating the band structure and dislocations in Ag and La co-doped SnTe

Author:

Xu Wenjing,Zhang Zhongwei,Liu Chengyan,Gao Jie,Ye Zhenyuan,Chen Chunguang,Peng Ying,Bai Xiaobo,Miao Lei

Abstract

AbstractEco-friendly SnTe based thermoelectric materials are intensively studied recently as candidates to replace PbTe; yet the thermoelectric performance of SnTe is suppressed by its intrinsically high carrier concentration and high thermal conductivity. In this work, we confirm that the Ag and La co-doping can be applied to simultaneously enhance the power factor and reduce the thermal conductivity, contributing to a final promotion of figure of merit. On one hand, the carrier concentration and band offset between valence bands are concurrently reduced, promoting the power factor to a highest value of ∼2436 µW·m−1·K−2 at 873 K. On the other hand, lots of dislocations (∼3.16×107 mm−2) associated with impurity precipitates are generated, resulting in the decline of thermal conductivity to a minimum value of 1.87 W·m−1·K−1 at 873 K. As a result, a substantial thermoelectric performance enhancement up to zT ≈ 1.0 at 873 K is obtained for the sample Sn0.94Ag0.09La0.05Te, which is twice that of the pristine SnTe (zT ≈ 0.49 at 873 K). This strategy of synergistic manipulation of electronic band and microstructures via introducing rare earth elements could be applied to other systems to improve thermoelectric performance.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3