Author:
Liu Yuchen,Chu Kaili,Zhou Yu,Li Yiran,Li Wenxian,Liu Bin
Abstract
AbstractOrthorhombic perovskite oxides are studied by high-throughput first-principles calculations to explore new thermal barrier coating (TBC) materials with low thermal conductivities. The mechanical and thermal properties are predicted for 160 orthorhombic perovskite oxides. The average atomic volume is identified as a possible predictor of the thermal conductivity for the perovskite oxides, as it has a good correlation with the thermal conductivity. Five compounds, i.e., LaTmO3, LaErO3, LaHoO3, SrCeO3, and SrPrO3, having thermal conductivities under 1 W·m−1·K−1 and good damage tolerance, are proposed as novel TBC materials. The obtained data are expected to inspire the design of perovskite oxide-based TBC materials and also support their future functionality investigations.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献