Self-healing behavior of Ti2AlC at a low oxygen partial pressure

Author:

Yao Boxiang,Li Shibo,Zhang Weiwei,Yu Wenbo,Zhou Yang,Fan Shukai,Bei Guoping

Abstract

AbstractTi2AlC, a MAX phase ceramic, has an attractive self-healing ability to restore performance via the oxidation-induced crack healing mechanism upon healing at high temperatures in air (high oxygen partial pressures). However, such healing ability to repair damages in vacuum or low oxygen partial pressure conditions remains unknown. Here, we report on the self-healing behavior of Ti2AlC at a low oxygen partial pressure of about 1 Pa. The experimental results showed that the strength recovery depends on both healing temperature and time. After healing at 1400 °C for 1–4 h, the healed samples exhibited the recovered strengths even exceeding the original strength of 375 MPa. The maximum recovered strength of ∼422 MPa was achieved in the healed Ti2AlC sample after healing at 1400 °C for 4 h, about 13% higher than the original strength. Damages were healed by the formed TiCx from the decomposition of Ti2AlC. The decomposition-induced crack healing as a new mechanism in the low oxygen partial pressure condition was disclosed for the MAX ceramics. The present study illustrates that key components made of Ti2AlC can prolong their service life and keep their reliability during use at high temperatures in low oxygen partial pressures.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3