Electronic structure, bonding characteristics, and mechanical behaviors of a new family of Si-containing damage-tolerant MAB phases M5SiB2 (M = IVB—VIB transition metals)

Author:

Ni Na,Zhang Hanchao,Zhou Yanchun

Abstract

AbstractMAB phases are layered ternary compounds with alternative stacking of transition metal boride layers and group A element layers. Until now, most of the investigated MAB phases are concentrated on compounds with Al as the A element layers. In this work, the family of M5SiB2 (M = IVB—VIB transition metals) compounds with silicon as interlayers were investigated by density functional theory (DFT) methods as potential MAB phases for high-temperature applications. Starting from the known Mo5SiB2, the electronic structure, bonding characteristics, and mechanical behaviors were systematically investigated and discussed. Although the composition of M5SiB2 does not follow the general formula of experimentally reported (MB)2zAx(MB2)y (z = 1, 2; x = 1, 2; y = 0, 1, 2), their layered structure and anisotropic bonding characteristics are similar to other known MAB phases, which justifies their classification as new members of this material class. As a result of the higher bulk modulus and lower shear modulus, Mo5SiB2 has a Pugh’s ratio of 0.53, which is much lower than the common MAB phases. It was found that the stability and mechanical properties of M5SiB2 compounds depend on their valence electron concentrations (VECs), and an optimum VEC exists as the criteria for stability. The hypothesized Zr and Hf containing compounds, i.e., Zr5SiB2 and Hf5SiB2, which are more interesting in terms of high-temperature oxidation/ablation resistance, were found to be unfortunately unstable. To cope with this problem, a new stable solid solution (Zr0.6Mo0.4)5SiB2 was designed based on VEC tuning to demonstrate a promising approach for developing new MAB phases with desirable compositions.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3