Self-supported porous heterostructure WC/WO3−x ceramic electrode for hydrogen evolution reaction in acidic and alkaline media

Author:

Wang Feihong,Dong Binbin,Wang Junwei,Ke Nianwang,Tan Chuntian,Huang Anding,Wu Yutong,Hao Luyuan,Yin Liangjun,Xu Xin,Xian Yuxi,Agathopoulos Simeon

Abstract

AbstractTungsten carbide (WC)-based materials are widely considered as the hydrogen evolution reaction (HER) process catalysts due to their “Pt-like” electronic structure. Nonetheless, traditional powder electrodes have a high cost, and display problems related to the process itself and the poor stability over operation time. This paper presented a self-supported asymmetric porous ceramic electrode with WO3−x whiskers formed in situ on the walls of the finger-like holes and membrane surface, which was prepared by combining phase inversion tape-casting, pressureless sintering, and thermal treatment in a CO2 atmosphere. The optimized ceramic electrode displayed good catalytic HER activity and outstanding stability at high current densities. More specifically, it demonstrated the lowest overpotentials of 107 and 123 mV and the lowest Tafel slopes of 59.3 and 72.4 mV·dec−1 at 10 mA·cm−2 in acidic and alkaline media, respectively. This superior performance was ascribed to the structure of the ceramic membrane and the charge transfer efficiency, which was favored by the in situ developed WC/WO3−x heterostructure and the oxygen vacancies.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3