Author:
Wang Feihong,Dong Binbin,Wang Junwei,Ke Nianwang,Tan Chuntian,Huang Anding,Wu Yutong,Hao Luyuan,Yin Liangjun,Xu Xin,Xian Yuxi,Agathopoulos Simeon
Abstract
AbstractTungsten carbide (WC)-based materials are widely considered as the hydrogen evolution reaction (HER) process catalysts due to their “Pt-like” electronic structure. Nonetheless, traditional powder electrodes have a high cost, and display problems related to the process itself and the poor stability over operation time. This paper presented a self-supported asymmetric porous ceramic electrode with WO3−x whiskers formed in situ on the walls of the finger-like holes and membrane surface, which was prepared by combining phase inversion tape-casting, pressureless sintering, and thermal treatment in a CO2 atmosphere. The optimized ceramic electrode displayed good catalytic HER activity and outstanding stability at high current densities. More specifically, it demonstrated the lowest overpotentials of 107 and 123 mV and the lowest Tafel slopes of 59.3 and 72.4 mV·dec−1 at 10 mA·cm−2 in acidic and alkaline media, respectively. This superior performance was ascribed to the structure of the ceramic membrane and the charge transfer efficiency, which was favored by the in situ developed WC/WO3−x heterostructure and the oxygen vacancies.
Publisher
Tsinghua University Press
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献