Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction

Author:

Tao Junnan,Wang Mingyuan,Liu Guiwu,Liu Qinqin,Lu Lei,Wan Neng,Tang Hua,Qiao Guanjun

Abstract

AbstractConverting water into hydrogen fuel and oxidizing benzyl alcohol to benzaldehyde simultaneously under visible light illumination is of great significance, but the fast recombination of photogenerated carriers in photocatalysts seriously decreases the conversion efficiency. Herein, a novel dual-functional 0D Cd0.5Zn0.5S/2D Ti3C2 hybrid was fabricated by a solvothermally in-situ generated assembling method. The Cd0.5Zn0.5S nano-spheres with a fluffy surface completely and uniformly covered the ultrathin Ti3C2 nanosheets, leading to the increased Schottky barrier (SB) sites due to a large contact area, which could accelerate the electron-hole separation and improve the light utilization. The optimized Cd0.5Zn0.5S/Ti3C2 hybrid simultaneously presents a hydrogen evolution rate of 5.3 mmol/(g·h) and a benzaldehyde production rate of 29.3 mmol/(g·h), which are ∼3.2 and 2 times higher than those of pristine Cd0.5Zn0.5S, respectively. Both the multiple experimental measurements and the density functional theory (DFT) calculations further demonstrate the tight connection between Cd0.5Zn0.5S and Ti3C2, formation of Schottky junction, and efficient photogenerated electron—hole separation. This paper suggests a dual-functional composite catalyst for photocatalytic hydrogen evolution and benzaldehyde production, and provides a new strategy for preventing the photogenerated electrons and holes from recombining by constructing a 0D/2D heterojunction with increased SB sites.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3