Mechanical properties of hot-pressed high-entropy diboride-based ceramics

Author:

Liu Ji-Xuan,Shen Xiao-Qin,Wu Yue,Li Fei,Liang Yongcheng,Zhang Guo-Jun

Abstract

AbstractHigh-entropy ceramics attract more and more attention in recent years. However, mechanical properties especially strength and fracture toughness for high-entropy ceramics and their composites have not been comprehensively reported. In this work, high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta 0.2)B2 (HEB) monolithic and its composite containing 20 vol% SiC (HEB–20SiC) are prepared by hot pressing. The addition of SiC not only accelerates the densification process but also refines the microstructure of HEB, resulting in improved mechanical properties. The obtained dense HEB and HEB–20SiC ceramics hot pressed at 1800 ℃ exhibit four-point flexural strength of 339±17 MPa and 447±45 MPa, and fracture toughness of 3.81±0.40 MPa·m1/2 and 4.85±0.33 MPa·m1/2 measured by single-edge notched beam (SENB) technique. Crack deflection and branching by SiC particles is considered to be the main toughening mechanisms for the HEB–20SiC composite. The hardness Hv0.2 of the sintered HEB and HEB–20SiC ceramics is 23.7±0.7 GPa and 24.8±1.2 GPa, respectively. With the increase of indentation load, the hardness of the sintered ceramics decreases rapidly until the load reaches about 49 N, due to the indentation size effect. Based on the current experimental investigation it can be seen that the room temperature bending strength and fracture toughness of the high-entropy diboride ceramics are within ranges commonly observed in structure ceramics.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3