Author:
Feng Bo,Wang Zhenhang,Fan Yunhao,Gu Jinghua,Zhang Yue
Abstract
AbstractZrB2-SiBCN ceramics with ZrO2 additive are hot-pressed under a constant applied pressure. The densification behavior of the composites is studied in a view of creep deformation by means of the Bernard-Granger and Guizard model. With determination of the stress exponent (n) and the apparent activation energy (Qd), the specific deformation mechanisms controlling densification are supposed. Within lower temperature ranges of 1300–1400 °C, the operative mechanism is considered to be grain boundary sliding accommodated by atom diffusion of the polymer-derived SiBCN (n = 1, Qd = 123±5 kJ/mol) and by viscous flow of the amorphous SiBCN (n = 2, Qd = 249±5 kJ/mol). At higher temperatures, the controlling mechanism transforms to lattice or intra-granular diffusion creep (n = 3–5) due to gradual consumption of the amorphous phase. It is suggested that diffusion of oxygen ions inside ZrO2 into the amorphous SiBCN decreases the viscosity, modifies the fluidity, and contributes to the grain boundary mobility.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献