Oxygen vacancy-mediated WO3 phase junction to steering photogenerated charge separation for enhanced water splitting

Author:

Li Huimin,Shen Qianqian,Zhang Han,Gao Jiaqi,Jia Husheng,Liu Xuguang,Li Qi,Xue Jinbo

Abstract

AbstractEffective charge separation and transfer is deemed to be the contributing factor to achieve high photoelectrochemical (PEC) water splitting performance on photoelectrodes. Building a phase junction structure with controllable phase transition of WO3 can further improve the photocatalytic performance. In this work, we realized the transition from orthorhombic to monoclinic by regulating the annealing temperatures, and constructed an orthorhombic-monoclinic WO3 (o-WO3/m-WO3) phase junction. The formation of oxygen vacancies causes an imbalance of the charge distribution in the crystal structure, which changes the W-O bond length and bond angle, accelerating the phase transition. As expected, an optimum PEC activity was achieved over the o-WO3/m-WO3 phase junction in WO3-450 photoelectrode, yielding the maximum O2 evolution rate roughly 32 times higher than that of pure WO3-250 without any sacrificial agents under visible light irradiation. The enhancement of catalytic activity is attributed to the atomically smooth interface with a highly matched lattice and robust built-in electric field around the phase junction, which leads to a less-defective and abrupt interface and provides a smooth interfacial charge separation and transfer path, leading to improved charge separation and transfer efficiency and a great enhancement in photocatalytic activity. This work strikes out on new paths in the formation of an oxygen vacancy-induced phase transition and provides new ideas for the design of catalysts.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3