Emissions of Er3+ and Yb3+ co-doped SrZrO3 nanocrystals under near-infrared and near-ultraviolet excitations

Author:

Lim Hyeontae,Lim Juyeong,Jang Soyoung,Lee Y. S.

Abstract

AbstractIn this study, the upconversion (UC) emissions of Er3+ and Yb3+ co-doped SrZrO3 nanocrystals (NCs) were investigated in terms of the thermal annealing temperature and concentration of Er3+ ions and compared with the emissions under a near-ultraviolet (near-UV) excitation. The NCs were synthesized by the combustion method, and the as-synthesized NCs were post-annealed at high temperatures. The X-ray diffraction patterns revealed that the grain sizes and crystallinity degrees of the samples increased with increasing annealing temperatures. The photoluminescence spectra of our samples exhibited strong green and very weak red emissions with the near-UV excitation, originating from the f-f transitions in the Er3+ ions. Interestingly, under near-infrared (near-IR) excitation, we identified sizable visible emissions at 525, 547, and 660 nm in our NCs, which indicated that the UC process successfully occurred in our NCs. These UC emissions were maximized in the NCs with an Er3+ concentration of 0.02 and thermal annealing at 1000 °C. We found that the intensity ratios of red to green emissions increased with increasing annealing temperatures. We discussed the differences in the emissions between near-UV and near-IR excitations.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3