Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials

Author:

Liu Da,Liu Honghua,Ning Shanshan,Chu Yanhui

Abstract

AbstractHigh-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space, unique microstructure, and adjustable properties. Previous studies focused mainly on high-entropy nanoparticles, while other high-entropy nanomaterials were rarely reported. Herein, we reported a new class of high-entropy nanomaterials, namely (Ta0.2Nb0.2Ti0.2W0.2Mo0.2)B2 high-entropy diboride (HEB-1) nanoflowers, for the first time. Formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics. We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1423 K. The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with diameters of 20–30 nm and lengths of 100–200 nm. Meanwhile, these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale. In addition, the formation of the as-synthesized HEB-1 nanoflowers could be well interpreted by a classical surface-controlled crystal growth theory. This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on high-entropy diboride nanomaterials.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3