Author:
Li Dongxu,Shen Zong-Yang,Li Zhipeng,Luo Wenqin,Wang Xingcai,Wang Zhumei,Song Fusheng,Li Yueming
Abstract
Abstract(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3 (BSxBNT, x = 0.3–V0.8) ceramics were prepared to investigate their structure, dielectric and ferroelectric properties. BSxBNT ceramics possess pure perovskite structure accompanied from a tetragonal symmetry to pseudo-cubic one with the increase of x value, being confirmed by X-ray diffraction (XRD) and Raman results. The Tm corresponding to a temperature in the vicinity of maximum dielectric constant gradually decreases from 110 °C (x = 0.3) to -45 °C (x = 0.8), across Tm = 36 °C (x = 0.5) with a maximum dielectric constant (ɛr = 5920 @1 kHz) around room temperature. The saturated polarization Ps gradually while the remnant polarization Pr sharply decreases with the increase of x value, making the P-E hysteresis loop of BSxBNT ceramics goes slim. A maximum difference between Ps and Pr (Ps-Pr) is obtained for BSxBNT ceramics with x = 0.5, at which a high recoverable energy density (Wrec = 1.04 J/cm3) is achieved under an applied electric field of 100 kV/cm with an efficiency of η = 77%. Meanwhile, the varied temperature P-E loops, fatigue measurements, and electric breakdown characteristics for the sample with x = 0.5 indicate that it is promising for pulsed power energy storage capacitor candidate materials.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献