Thermoelectric performance enhancement by manipulation of Sr/Ti doping in two sublayers of Ca3Co4O9

Author:

Zhang Li,Liu Yichen,Tan Thiam Teck,Liu Yi,Zheng Jian,Yang Yanling,Hou Xiaojiang,Feng Lei,Suo Guoquan,Ye Xiaohui,Li Sean

Abstract

AbstractThermoelectric (TE) performance of Ca3Co4O9 (CCO) has been investigated extensively via a doping strategy in the past decades. However, the doping sites of different sublayers in CCO and their contributions to the TE performance remain unrevealed because of its strong correlated electronic system. In this work, Sr and Ti are chosen to realize doping at the [Ca2CoO3] and [CoO2] sublayers in CCO. It was found that figure of merit (ZT) at 957 K of Ti-doped CCO was improved 30% than that of undoped CCO whereas 1 at% Sr doping brought about a 150% increase in ZT as compared to undoped CCO. The significant increase in electronic conductivity and the Seebeck coefficient are attributed to the enhanced carrier concentration and spin-entropy of Co4+ originating from the Sr doping effects in [Ca2CoO3] sublayer, which are evidenced by the scanning electron microscope (SEM), Raman, Hall, and X-ray photoelectron spectroscopy (XPS) analysis. Furthermore, the reduced thermal conductivity is attributed to the improved phonon scattering from heavier Sr doped Ca site in [Ca2CoO3] sublayer. Our findings demonstrate that doping at Ca sites of [Ca2CoO3] layer is a feasible pathway to boost TE performance of CCO material through promoting the electronic conductivity and the Seebeck coefficient, and reducing the thermal conductivity simultaneously. This work provides a deep understanding of the current limited ZT enhancement on CCO material and provides an approach to enhance the TE performance of other layered structure materials.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3