A novel 2D graphene oxide modified α-AgVO3 nanorods: Design, fabrication, and enhanced visible-light photocatalytic performance

Author:

Wu Jian,Li Liangyu,Li Xing-ao,Min Xin,Xing Yan

Abstract

AbstractSilver vanadates are promising visible-light-responded photocatalysts with suitable bandgap for solar absorption. However, the easy recombination of photogenerated carriers limits their performance. To overcome this obstacle, a novel 2D graphene oxide (GO) modified α-AgVO3 nanorods (GO/α-AgVO3) photocatalyst was designed herein to improve the separation of photocarriers. The GO/α-AgVO3 was fabricated through a facile in-situ coprecipitation method at room temperature. It was found that the as-prepared 0.5 wt% GO/α-AgVO3 exhibited the most excellent performance for rhodamine B (RhB) decomposition, with an apparent reaction rate constant 18 times higher than that of pure α-AgVO3 under visible-light irradiation. In light of the first-principles calculations and the hetero junction analysis, the mechanism underpinned the enhanced photocatalytic performance was proposed. The enhanced photocatalytic performance was ascribed to the appropriate bandgap of α-AgVO3 nanorods for visible-light response and efficient separation of photocarriers through GO nanosheets. This work demonstrates the feasibility of overcoming the easy recombination of photogenerated carriers and provides a valuable GO/α-AgVO3 photocatalyst for pollutant degradation.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3