High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption

Author:

Ma Jiabin,Zhao Biao,Xiang Huimin,Dai Fu-Zhi,Liu Yi,Zhang Rui,Zhou Yanchun

Abstract

AbstractFerrites are the most widely used microwave absorbing materials to deal with the threat of electromagnetic (EM) pollution. However, the lack of sufficient dielectric loss capacity is the main challenge that limits their applications. To cope with this challenge, three high-entropy (HE) spinel-type ferrite ceramics including (Mg0.2Mn0.2Fe0.2Co0.2Ni0.2)Fe2O4, (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)Fe2O4, and (Mg0.2Fe0.2Co0.2Ni0.2Zn0.2)Fe2O4 were designed and successfully prepared through solid state synthesis. The results show that all three HE MFe2O4 samples exhibit synergetic dielectric loss and magnetic loss. The good magnetic loss ability is due to the presence of magnetic components; while the enhanced dielectric properties are attributed to nano-domain, hopping mechanism of resonance effect and HE effect. Among three HE spinels, (Mg0.2Mn0.2Fe0.2Co0.2Ni0.2)Fe2O4 shows the best EM wave absorption performance, e.g., its minimum reflection loss (RLmin) reaches −35.10 dB at 6.78 GHz with a thickness of 3.5 mm, and the optimized effective absorption bandwidth (EAB) is 7.48 GHz from 8.48 to 15.96 GHz at the thickness of 2.4 mm. Due to the easy preparation and strong EM dissipation ability, HE MFe2O4 are promising as a new type of EM absorption materials.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3