Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance

Author:

Wang Kailun,Zhu Jinpeng,Wang Hailong,Yang Kaijun,Zhu Yameng,Qing Yubin,Ma Zhuang,Gao Lihong,Liu Yanbo,Wei Sihao,Shu Yongchun,Zhou Yanchun,He Jilin

Abstract

AbstractHigh-entropy rare-earth aluminate (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 (HE-RE3Al5O12) has been considered as a promising thermal protection coating (TPC) material based on its low thermal conductivity and close thermal expansion coefficient to that of Al2O3. However, such a coating has not been experimentally prepared, and its thermal protection performance has not been evaluated. To prove the feasibility of utilizing HE-RE3Al5O12 as a TPC, HE-RE3Al5O12 coating was deposited on a nickelbased superalloy for the first time using the atmospheric plasma spraying technique. The stability, surface, and cross-sectional morphologies, as well as the fracture surface of the HE-RE3Al5O12 coating were investigated, and the thermal shock resistance was evaluated using the oxyacetylene flame test. The results show that the HE-RE3Al5O12 coating can remain intact after 50 cycles at 1200 °C for 200 s, while the edge peeling phenomenon occurs after 10 cycles at 1400 °C for 200 s. This study clearly demonstrates that HE-RE3Al5O12 coating is effective for protecting the nickel-based superalloy, and the atmospheric plasma spraying is a suitable method for preparing this kind of coatings.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3