Interior-collapsing mechanism by hydrothermal process of the MgAl2O4/MgO porous ceramic

Author:

Yao Yao,Zhang Yue

Abstract

AbstractCeramic core is a critical component in the super-alloy turbine blade casting. In our previous work, a novel multi-phase MgAl2O4/MgO porous ceramic was prepared for this purpose. The most important property was that it crumbled completely after hydrothermal treatment in just pure water, due to the hydration of MgO. In this work, the hydration process of the MgO embedded in the inert matrix was investigated in detail. The collapse behaved as an interior destruction without any bulk expansion of the sample. The hydration percentage was the only factor related to the water-collapsibility. The morphology of hydration product indicated that the reaction advanced in particular direction. Based on the finite element analysis for the expansion effect on the porous structure, the interior-collapsing mechanism was proposed. During the hydration process, the MgO grains exerted pressure to the surrounding matrix and induced the collapse in the adjacent structure. This process took place throughout the matrix. Finally, the sample crumbled completely to the powders. No bulk dilatation was detected before the powdering, indicating that the collapse process would not exert pressure outward. Thus the alloy blade would not be damaged during the removal of the ceramic core. It was also predicted that the decrease in the MgO grain size was beneficial to the water-collapsibility.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3