Author:
Li Ruifeng,Fu Qiuyun,Zou Xiaohua,Zheng Zhiping,Luo Wei,Yan Liang
Abstract
AbstractThe thin film of heat-sensitive materials has been widely concerned with the current trend of miniaturization and integration of sensors. In this work, Mn1.56Co0.96Ni0.48O4 (MCNO) thin films were prepared on SiO2/Si substrates by sputtering with Mn–Co–Ni alloy target and then annealing in air at different temperatures (650–900 °C). The X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis indicated that the main crystalline phase of MCNO thin films was spinel crystal structure; the surface of the thin films was very dense and uniform. The electrical properties of the thin films were studied in the temperature range of–5–50 °C. The MCNO thin film with a low room temperature resistance R25 of 71.1 kΩ and a high thermosensitive constant B value of 3305 K was obtained at 750 °C. X-ray photoelectron spectroscopy (XPS) analysis showed that the concentration of Mn3+ and Mn4+ cations in MCNO thin films is the highest when annealing temperature is 750 °C. The complex impedance analysis revealed internal conduction mechanism of the MCNO thin film and the resistance of the thin film was dominated by grain boundary resistance.
Publisher
Springer Science and Business Media LLC
Subject
Ceramics and Composites,Electronic, Optical and Magnetic Materials
Reference29 articles.
1. Ma C, Ren W, Wang L, et al. Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x(LaMnO3)x composite thin films. J Eur Ceram Soc 2016, 36: 4059–064.
2. Kong WW, Chen L, Gao B, et al. Fabrication and properties of Mn1.56Co0.96Ni0.48O4 free-standing ultrathin chips. Ceram Int 2014, 40: 8405–8409.
3. Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective. J Am Ceram Soc 2009, 92: 967–983.
4. Zhang F, Zhou W, Ouyang C, et al. Annealing effect on the structural and electrical performance of Mn–Co–Ni–O films. AIP Adv 2015, 5: 117137.
5. Jadhav R, Kulkarni D, Puri V. Structural and electrical properties of fritless Ni(1–x)CuxMn2O4 (0 ≤ x ≤ 1) thick film NTC ceramic. J Mater Sci: Mater Electron 2010, 21: 503–508.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献