Gas-discharge induced flash sintering of YSZ ceramics at room temperature

Author:

Zhu Yuchen,Zhou Hongyang,Huang Rongxia,Yan Nianping,Wang Xilin,Liu Guanghua,Jia Zhidong

Abstract

AbstractThis is the first study to conduct the flash sintering of 3 mol% yttria-stabilized zirconia (3YSZ) ceramics at room temperature (25 °C) under a strong electric field, larger than 1 kV/cm. At the standard atmospheric pressure (101 kPa), the probability of successful sintering is approximately half of that at low atmospheric pressure, lower than 80 kPa. The success of the proposed flash sintering process was determined based on the high electric arc performance at different atmospheric pressures ranging from 20 to 100 kPa. The 3YSZ samples achieved a maximum relative density of 99.5% with a grain size of ∼200 nm. The results showed that as the atmospheric pressure decreases, the onset electric field of flash sintering decreases, corresponding to the empirical formula of the flashover voltage. Moreover, flash sintering was found to be triggered by the surface flashover of ceramic samples, and the electric arc on the sample surfaces floated upward before complete flash sintering at overly high pressures, resulting in the failure of flash sintering. This study reveals a new method for the facile preparation of flash-sintered ceramics at room temperature, which will promote the application of flash sintering in the ceramic industry.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3