Differential spatial plasticity response in common bean (Phaseolus vulgaris L.) root architecture under water stress is driven by increased root diameter, surface area and volume at deeper layers

Author:

Riyaz Ishrat,Shafi Sadiah,Zaffar Aaqif,Wani M. Altaf,Zargar Sajad Majeed,Djanaguiraman M.,Prasad P. V. Vara,Sofi Parvaze A.

Abstract

AbstractRoot plasticity enables plants to adapt to spatial and temporal changes in soil resources. In this study, 40 common bean genotypes evaluated for two root and shoot traits under irrigated and water stress. Three genotypes WB-216, WB-N-2, and WB-966 with contrasting plasticity responses were used for in-depth study. Highest positive plasticity for most root traits was found in case of WB-N2 and WB-216, whereas, WB-966 had negative plasticity for all the traits recorded. In terms of spatial plasticity for root traits in three root length sections, WB-216 was positively plastic for root diameter with progressive decrease from top to bottom sections. WB-N2 had positive plasticity values for root diameter, root surface area and root volume. WB-966 had negative plasticity for all the traits. For WB-216, the root diameter increased under drought in S1 but was almost same in bottom sections. In case of WB-N2, there was increase in root diameter in S2 and S3, but for WB-966, root diameter decreased in all sections. Similar trend was observed in all three genotypes for root surface area and volume. We report that major drivers of spatial plasticity of root architectural traits are increased root diameter, surface area and volume at deeper layers.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3