De novo hydroponics system efficiency for the cuttings of alfalfa (Medicago sativa L.)

Author:

Zhao Zhili,Zhang Wenyu,Liu Yang,Li Shuai,Yao Wu,Sun Xiaohui,Li Siyu,Ma Lichao,Sun Juan,Yang Qingchuan,Li Yongxiang,Yang Guofeng,Wang Zeng-Yu,Cong Lili

Abstract

AbstractThe legume plant alfalfa (Medicago sativa L.) is a widely cultivated perennial forage due to its high protein content, palatability, and strong adaptability to diverse agro-ecological zones. Alfalfa is a self-incompatible cross-pollinated autotetraploid species with tetrasomic inheritance. Therefore, maintaining excellent traits through seed reproduction is a prime challenge in alfalfa. However, the cutting propagation technology could enable consistent multiplication of quality plants that are genetically identical to the parent plant. The current study aimed to develop a simple, cost-effective, reproducible, and efficient hydroponic cutting method to preserve alfalfa plants and for molecular research. In this study, alfalfa landrace ‘Wudi’ was grown in hydroponics for 30 days and used as source material for cuttings. The top, middle and bottom sections of its stem were used as cuttings. The rooting rate, root length, and stem height of the different stem sections were compared to determine the best segment for alfalfa propagation in four nutrient treatments (HM, HM + 1/500H, HM + 1/1000H and d HM + 1/2000H). After 21 days of culture, the rooting rates of all the three stem types under four cutting nutrient solutions were above 78%. The rooting rate of the middle and bottom parts in HM + 1/1000 H and HM + 1/2000 H nutrient solutions reached more than 93%, with a higher health survey score (> 4.70). In conclusion, this study developed a de novo cutting propagation method that can be used to conserve and propagate germplasm in breeding programs and research. This method is a new report on the cutting propagation of alfalfa by hydroponics, which could supplement the existing cutting propagation methods.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3